Implement Dropout Layer in Deep Neural Network
Explanation Video Link on Youtube
import numpy as np
class Dropout():
def __init__(self, p):
self.mask = None
self.p = p
def __call__(self, X, mode):
return self.forward(X, mode)
def forward(self, X, mode):
if mode == 'train':
self.mask = np.random.binomial(1, self.p, X.shape)
self.mask = np.true_divide(self.mask, self.p)
out = self.mask * X
else:
out = X
return out
def backward(self, d_out):
return d_out * self.mask
PreviousImplement Activation Layer in Deep Neural NetworkNextImplement Forward and Backward Propagation for Fully Connected Layer in Deep Neural Network
Last updated
Was this helpful?