Thread Cooperation and Solution of Vector Dot Product
Explanation Video Link on Youtube
!apt-get --purge remove cuda nvidia* libnvidia-*
!dpkg -l | grep cuda- | awk '{print $2}' | xargs -n1 dpkg --purge
!apt-get remove cuda-*
!apt autoremove
!apt-get update
!wget https://developer.nvidia.com/compute/cuda/9.2/Prod/local_installers/cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64 -O cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb
!dpkg -i cuda-repo-ubuntu1604-9-2-local_9.2.88-1_amd64.deb
!apt-key add /var/cuda-repo-9-2-local/7fa2af80.pub
!apt-get update
!apt-get install cuda-9.2
!pip install git+git://github.com/andreinechaev/nvcc4jupyter.git
%load_ext nvcc_plugin
%%cu
#include <stdio.h>
#define N (1024)
__global__ void add( int *a, int *b, int *c ) {
int tid = threadIdx.x + blockIdx.x * blockDim.x;
c[tid] = a[tid] * b[tid];
}
int main(void) {
int a[N], b[N], c[N];
int *dev_a, *dev_b, *dev_c;
// allocate the memory on the GPU
cudaMalloc((void**)&dev_a, N * sizeof(int));
cudaMalloc((void**)&dev_b, N * sizeof(int));
cudaMalloc((void**)&dev_c, N * sizeof(int));
// fill the array 'a' and 'b' on the CPU
for (int i = 0; i < N; i++) {
a[i] = i;
b[i] = i;
}
cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
add<<<128, 128>>>(dev_a, dev_b, dev_c);
// copy the array'c' back from GPU to the CPU
cudaMemcpy(c, dev_c, N * sizeof(int), cudaMemcpyDeviceToHost);
bool success = true;
int sum = 0;
for (int i = 0; i < N; i++) {
sum += c[i];
}
if (success) printf("Sum is: %d", sum);
// free the memory allocated on the GPU
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_c);
return 0;
}
Improvement above by using thread cooperation
%%cu
#include <stdio.h>
const int threadsPerBlock = 256;
const int blocksPerGrid = 4;
const int N = threadsPerBlock * blocksPerGrid;
__global__ void dot(int *a, int *b, int *c) {
__shared__ int cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x;
cache[cacheIndex] = a[tid] * b[tid];
__syncthreads();
// for reductions, threadsPerBlock must be a power of 2
int i = blockDim.x/2;
while (i != 0) {
if (cacheIndex < i) {
cache[cacheIndex] += cache[cacheIndex + i];
}
__syncthreads();
i /= 2;
}
if (cacheIndex == 0) {
c[blockIdx.x] = cache[0];
}
}
int main(void) {
int a[N], b[N];
int partial_c[blocksPerGrid] = {0};
int *dev_a, *dev_b, *dev_partial_c;
// allocate the memory on the GPU
cudaMalloc((void**)&dev_a, N * sizeof(int));
cudaMalloc((void**)&dev_b, N * sizeof(int));
cudaMalloc((void**)&dev_partial_c, blocksPerGrid * sizeof(int));
// fill the array 'a' and 'b' on the CPU
for (int i = 0; i < N; i++) {
a[i] = i;
b[i] = i;
}
cudaMemcpy(dev_a, a, N * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(dev_b, b, N * sizeof(int), cudaMemcpyHostToDevice);
dot<<<blocksPerGrid, threadsPerBlock>>>(dev_a, dev_b, dev_partial_c);
// copy the array'c' back from GPU to the CPU
cudaMemcpy(partial_c, dev_partial_c, blocksPerGrid * sizeof(int), cudaMemcpyDeviceToHost);
bool success = true;
int sum = 0;
for (int i = 0; i< blocksPerGrid; i++) {
sum += partial_c[i];
}
if (success) printf("Sum is: %d", sum);
// free the memory allocated on the GPU
cudaFree(dev_a);
cudaFree(dev_b);
cudaFree(dev_partial_c);
return 0;
}
Last updated
Was this helpful?